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ABSTRACT 

A s tochas t ic  g a m e  is v a l u e d  if for every player k the re  is a func t ion  

rk: S -+ R from the  s t a t e  space  S to t he  real n u m b e r s  such  t h a t  for every 

e > 0 the re  is an  e equi l ibr ium such  t h a t  wi th  probabi l i ty  at  least  1 - e no 

s t a t e  s is reached where  the  fu tu re  expec ted  payoff  for any  player k differs 

f rom rk(s) by more  t h a n  e. We call a s tochas t ic  g a m e  n o r m a l  if t he  s t a t e  

space  is at  mos t  countable ,  the re  are finitely m a n y  players,  a t  every s t a t e  

every player has  only finitely m a n y  act ions,  and  the  payoffs are uni formly  

bounded  and  Borel measu rab l e  as func t ions  on t he  histories  of  play. We 

d e m o n s t r a t e  an  example  of a recursive two-person  non-ze ro - sum norma l  

s tochas t ic  g a m e  wi th  only th ree  non-absorb ing  s t a t e s  and  limit average 

payoffs t h a t  is no t  valued (bu t  does have  e equil ibria for every posit ive 

e). In  th i s  respect  two-person non-ze ro - sum s tochas t ic  g a m e s  are  very 

different f rom thei r  ze ro - sum varieties.  N. Vieille proved t h a t  all such 

non-ze ro - sum g a m e s  wi th  finitely m a n y  s t a t e s  have  an  e equi l ib r ium for 

every posit ive e, and  our  example  shows t h a t  any  proof  of  th is  resul t  m u s t  

be qual i ta t ive ly  different f rom t he  exis tence  proofs for ze ro - sum games .  

To show t h a t  our  example  is no t  va lued we need t h a t  the  ex is tence  of 

e equil ibria for all posit ive e implies  a "perfection" property.  Should  

the re  exist  a no rma l  s tochas t ic  game  wi thou t  an  c equi l ibr ium for some  

> 0, th is  perfect ion p roper ty  m a y  be useful  for d e m o n s t r a t i n g  th is  fact. 

Fur the rmore ,  our  example  sews some  doub t  concern ing  t he  ex is tence  of 

equil ibria for two-person  non-ze ro - sum recursive no rma l  s tochas t ic  games  

wi th  coun tab ly  m a n y  s ta tes .  
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1. I n t r o d u c t i o n  

An e q u i l i b r i u m  is a set of strategies, one for each player, such that  no player 

can gain in payoff by choosing a different strategy, given that  all the other 

players do not change their strategies. A two-person game is zero-sum when the 

payoff to one player is always the negation of the payoff to the other player; if 

there is an equilibrium for a zero-sum game then there is a unique equilibrium 

payoff (to Player One) and it is called the value  of the game. 

For any c ~ 0, an e -equi l ib r ium in a game is a set of strategies, one for each 

player, such that  no player can gain in payoff by more than c by choosing a 

different strategy, given that  all the other players do not change their strategies. 

We say that  approximate equilibria exist if for every c > 0 there exists an c- 

equilibrium. If a game has no equilibrium but does have approximate equilibria, 

then it is unavoidable that  there will be some advantage to some player to break 

from the prescribed behavior; however, this advantage can be made as small 

as one wants. An equilibrium is often too much to expect, but approximate 

equilibria are the next best thing. Given finitely many players and a uniform 

bound on the payoffs, any vector cluster point of e equilibrium payoffs as c 

converges to zero will give to the game a kind of equilibrium payoff to each 

player. If the game is also zero-sum and has approximate equilibria, then there 

will be a unique cluster point of c equilibrium payoffs (for Player One) as c 

converges to zero, also called the value of the game. 

A s tochas t i c  game is played on a state space. The present state and the 

present behavior of all players determines stochastically the transition to a new 

state. All players have complete knowledge of the past history of play. A priori 

there is no bound on the number of stages of play. 

We define a stochastic game to be n o r m a l  if 

(1) there are countably many states, 

(2) there are finitely many players and at any state the action sets for all 

players are finite, 

(3) all the payoffs defined in the game are uniformly bounded, 

(4) the payoffs are functions on the histories of play that  are measurable with 

respect to the Borel a-algebra defined by the finite stages of the game. 

This fourth property will be made more precise later. 

This paper concerns only normal stochastic games. We are interested in the 

complexity generated endogenously between the definition of the game and its 

equilibria. 

Shapley [7] introduced the concept of a stochastic game in the context of zero- 
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sum games where the payoffs are evaluated according to a function determined 

only by the state and the pair of actions taken and a discount factor. A discount 

factor is a positive quantity p strictly less than one such that  for every stage i > 0 

of play the i § 1st stage is worth only p times that  of the i th stage of play. The 

finiteness of the geometric sum 1 +p+p2+... gives the game a compact structure. 

Shapley showed that  such discounted normal zero-sum games with finitely many 

states have equilibria and values obtainable from stationary strategies, meaning 

that  the strategies are independent of both the stage and history of play (and 

are dependent only on the state). 

Another way to evaluate the payoffs is by some limit of average values deter- 

mined by the states and the actions chosen, averaged over the stages of play. 

This is called the l imi t  average  evaluation. For example, if a player received 

a sequence w0 ,wl , . . ,  of payoffs on the stages 0, 1 , . . . ,  respectively, then her 
1 i payoff could be limi__.~ sup ~ ~k=o Wk. In general, when payoffs are limit av- 

erage normal stochastic games do not have equilibria. This was demonstrated 

by Blackwell and Ferguson [1] with their famous zero-sum example "The Big 

Match". However, they showed that  this game does have approximate equilibria 

and a value. 

Mertens and Neyman [5] proved that  every zero-sum normal stochastic game 

with limit average payoffs played on a finite state space has approximate equi- 

libria and a value. Maitra and Sudderth [3] extended this result to countably 

many states and Martin [4] extended this result further to payoff functions de- 

fined on the infinite paths of play that  are Borel with respect to their finite stage 
truncations. 

Concerning two-player non-zero-sum games with limit average payoffs, the 

central result was accomplished by Vieille [8]; he proved that  all such normal 

stochastic games with finitely many states have approximate equilibria. For 

two-player non-zero-sum normal stochastic games with countably many states 

the question is still open. 

If the time horizon of a normal stochastic game is truncated so that  there 

is a finite maximum number of stages then equilibria will exist [6]. The open- 

ended nature of the time horizon gives stochastic games their most important 

theoretical complication. 

The property of "valued" for stochastic games (stated in the abstract) is 

a natural strengthening of the approximate equilibria property. Consider a 

sequence of ei equilibria with the ei converging to zero and let s be a state such 

that  with these approximate equilibria s is reached with probabilities that  do 
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not converge to zero. For every player k there will be a quantity rk(8) and a 

subsequence of the ei equilibria such that,  conditioned on the first visit to s, the 

expected payoffs for player k will converge to rk(s). At the second visit to the 

state s the sub-game that  remains is no different from the game that  starts at 

this state. Of course the equilibria are only approximate, meaning that  there 

could be a very small probability that  the players find themselves in a situation 

at some state s calling for behavior that  is far from that  of an equilibrium for the 

game that  starts at s. But one could expect some property of payoff stability 

for some sequence of e equilibria like that  of the valued property, namely that  if 

a state is reached with large probability then almost all visits to this state yield 

approximately the same payoffs. 

Before going further, an additional concept is necessary. A state is a b s o r b i n g  

if once this state is reached the play can never leave this state, no matter what 

the players do. If zero is the payoff for all players at all non-absorbing states 

then the game is recurs ive.  An absorbing state defines an isolated sub-game, 

and therefore in general one associates to an absorbing state a fixed payoff for 

each player representing what they receive in equilibrium if this absorbing state 

is reached. An absorbing state in a stochastic game demonstrates vividly the 

difference between finitely repeated games and discounted games on the one 

hand and limit average games on the other. In a finitely repeated game or a 

discounted game when an absorbing state is reached the payoff to a player would 

be a convex combination of the absorbing state payoffs and the payoffs on the 

stages before this absorbing state is reached. If the payoffs to the players are 

limit average, once reaching an absorbing state the payoffs to the players are 

determined by this absorbing state only. 

In general normal recursive stochastic games do not possess the valued prop- 

erty. With three players and finitely many states Flesch, Thuijsman and Vrieze 

[2] found a counter-example. Their game is very simple, involving only one 

special state where the players have any influence on the outcome of the game. 

They showed that  for sufficiently small e > 0 the only e equilibria involve cyclic 

behavior, both of the players and of the payoffs conditioned on the event that  

the game has remained at the special state. 

We introduce a recursive two-person non-zero-sum normal stochastic game 

with three non-absorbing states and limit average payoffs that  is not valued. 

New about our example is that  the lack of the valued property is possible with 

only two players (and finitely many states and actions). 

In Vieille's proof of approximate equilibria (for two-player non-zero-sum 
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games with finitely many states) the behavior of the players is very compli- 

cated, involving nothing like the valued property. Naturally one wonders if 

there is a much simpler proof for Vieille's result, a proof closer in style to those 

for zero-sum normal stochastic games which do utilize the valued property, for 

example with some kind of fixed point argument on the space of payoff vectors 

(see [3]). Zero-sum normal stochastic games are valued; the proof is easy and 

provided below. Our main result shows that such an alternative approach is not 

possible; there is an aspect of Vieille's proof (or any alternative proof of Vieille's 

result) that must be complicated. 

With the Vieille proof, the usual behavior of the players depends on more 

than the state which is visited. For some non-absorbing state that could be 

visited infinitely many times the players may return often to this state in the 

e equilibria such that the expected number of visits is in inverse proportion to 

a fixed power of e. At such a state signals may be given by one of the players, 

and the future behavior of both players may be dependent on these signals. 

Of course if the signals distinguish between two different ways to play such 

that in the limit both signals are given with large probability and they imply 

significantly different expected future payoffs to the player who is not giving the 

signal, then the valued property would be contradicted. 

Zero-sum games have a monotonicity relationship between the strategies and 

their values. If the payoff to a player associated with a combination of ac- 

tions in a zero-sum game is increased, then the value for that player cannot go 

down. This is very different with non-zero-sum games and their equilibria. By 

increasing the payoff to some player associated with a combination of actions, 

an equilibrium based on cooperation may be destroyed. The introduced lack 

of trust and the re-establishment of balance in all new equilibria could result 

in lower payoffs for the player whose payoff was increased. To obtain our main 

result, we exploit this lack of monotonicity. 

In the next section we describe the model of normal stochastic games. We 

establish relationships between approximate equilibria, value, and perfection. 

The third section contains our example and the proof that it is not valued. The 

fourth and last section discusses the open problem of approximate equilibria for 

games with countably many states. 

2. The  model  

We define normal stochastic games similarly to Markov chains and their har- 

monic functions. The additional complication concerns the freedom of the play- 
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ers to influence the transitions based on the previous history of play. By ex- 

tending the definition of the state space so that  distinct past histories of play 

lead to distinct states, we would stay close to the explicit context of Markov 

chains, as then a strategy choice from each player would define a Markov chain. 

But then we could lose track of the original structure of the game, especially if 

it is defined by a finite state space. 

For every finite or countable set A let A(A) stand for the set of all probability 

distributions on A. If A is finite then A(A) is a finite-dimensional simplex. If 

x E A(A) and a E A then the a coordinate of x will be represented as x(a)  (the 

probability given to a by x). 

There is a countable or finite state space S and a finite set N of players. For 

every player n E N and every s E S there is a finite set A2 of actions. (If 

the action sets are countable then even for one-stage zero-sum games there are 

examples without approximate equilibria, for example the game where the two 

players choose natural numbers and the player who chooses the larger number 

wins a unit value.) For every s E S and every a E As := l i n e N  A2 (a choice of 

action for each player) there will be a transition law p~ E A(S) governing the 

transition to states at the next stage of play after a visit to s. 

We assume that  the game starts at an initial state ~ E S. (If one prefers to 

start  with a distribution on all the states in S one can add an initial state 

that  occurs only at the start of the game and such that  every player has only 

one action at this state.) Define 

?-/~ :=  {(~ = so, ao, s l ,a l , . . . ) l  Vi >_ Oai E As,,p~',(si+l) > 0}, 

the set of infinite histories of play. For the initial state ~ E S let H~ := {(~)}, 

and for every i > 1 let 7-/s be the set of truncations of 7-/oo of the form (6 = 

So, ao, Sl, a l , . . . ,  s i -1 ,  ai-1,  si = s) (leaving out the actions at stage i). Let Hi 

be the union Uses 7-/~ and let 7-/s be the union Ui~0 7-/~ (with 7-/~ the empty set 

if s is not reachable on stage i). Let 7-/~ be the union Ui=0 Hi = Uses 7-/s. If 

h E 7-/~ is also in 7-/s then we say that  h t e r m i n a t e s  at s. 

A payoff for a player n E N in a normal stochastic game is a function 12 n 

on 7-/~ that  is uniformly bounded and measurable with respect to the Borel 

a-algebra generated by the partitions on 7-/oo induced by the 7-/i. A two-player 

game is z e r o - s u m  if Vl(h) -F ~22(h) = 0 for all h E H ~  (where without loss of 

generality we assume that  N = {1, 2}). Let M > 1 be a positive real number 

larger than the maximal difference between all payoffs in the game. 

A strategy a n of Player n E N is a collection of functions (a2] s E S) 

such that  for every s E S, a n is a function from 7-/s to A(A2). For every 
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tuple of strategies a = (anl n E N),  one s trategy for each player, probabili ty 

distributions #a,i are induced on the Hi  in the natural  way. We star t  at the 

initial history (~) e 7-/~ with #o,0({(s)}) = 1. Given that  #~#(hi) is positive for 

some hi E 7-/~ ~ and hi+l E T/i+1 is a history such that  the i stage truncation of 

hz+l is equal to hi E T/~ ~ with h~+l = (hi,ai, si+l) and ai -- (a~l n E N),  we 
O " n  h n define inductively # ~ # + l ( h i + l ) : =  #~#(hi)p~(Si+l)1-IneN s~( i)(ai ). A Borel 

probabili ty distribution #o is induced on 7-/oo in the natural  way, by the #~,i and 

Kolmogorov's Extension Theorem. For every player n E N and every s trategy 

tuple a the distribution #o generates a payoff 1;'~(a) for player n as the expected 

value of the function 12~ on ~ ,  determined by the probabili ty distribution #~. 

For any tuple a = (an l n �9 N)  of strategies, an alternative tuple 5 = 

(0~1 n �9 N)  and a player k E N, define hi5 k to be the tuple such that  ~k 

is the strategy for player k but if n ~ k then a n is the s trategy for player n. An 

equilibrium is a strategy tuple a --- (an l n �9 N) such that  for any alternative 

tuple (~n I n �9 N)  and every player n �9 N it holds that  )2n(al5 n) < e + "l;n(a). 
A zero-sum game has the value r �9 R for a designated first player if for every 

positive e there is an e equilibrium whose expected payoff for the first player is 

within ~ of r. 

A stochastic game is a l imi t  a v e r a g e  game when for every player n C N 

the Borel function ];n is between limi-~or inf and limi~or sup of the average 
1 i - - 1  n n 7 ~-~k=0 w~k (ak) where, for every state s �9 S and n �9 N,  w~ is a real function 

defined on As = [ImeN A~. 
For any tuple a of strategies, a player n �9 N, and a stage i of play define 

v~: 7-/~ --~ R by vn(h~) equaling the expected value of ]2n(a) conditioned on 

reaching hi on the i th stage, with v~(hi) defined to be any quantity bounded 

within the payoffs defining the game if the probabili ty of reaching hi is zero. 

to 7-/~. For any fixed a and player n �9 N the Extend the definition of v~ 
n function va on 7-/~o with respect to #o is harmonic. 

Define a stochastic game to be v a l u e d  if for every player n �9 N there exists 

a function r~: S ~ R such that  for every e > 0 there is an e equilibrium a to 

the game such that  the probabili ty does not exceed e that  some history hi �9 7-/~ 

occurs with Ivn(hi) - rn(s)l > c for some player n �9 N.  

PROPOSITION 1: Ali zero-sum normal stochastic games are valued. 

Proof." Let r: S ~ R be defined so that  r(s) is the value of the game (for 

Player One) start ing at the s tate  s. (The existence of this value was proven 

by Martin [4].) For any 0 < e < 1 let a be a s trategy pair where both players 
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guarantee a payoff (for Player One) within e2/10 of the value r(~), where ~ is 

the initial state. Assuming that  maxi I v~ (hi) -r(si)[ > e is obtained for a subset 

A C_ 7-/~0 of finite histories reached with a probability of more than e (according 

to the distribution #~), we can assume by symmetry that  there is a subset 

`41 C_ .4 given a probability of at least e/2 such that  mini vl(hi)  - r(si) < 
e is obtained (since otherwise we obtain the same for Player Two with - r  

replacing r). We alter the strategy of Player One so that  at the first stage i 

such that  v~(hi)-r(s i)  < e Player One switches her strategy to one guaranteeing 

r(si) - e/2. The gain in expected payoff for Player One would be at least e2/4, 

a contradiction. 1 

For every player n define xn: S ~ R so that  Xn(s) is the min-max value for 

player n at the state s, the upper bound for what player n can obtain from a 

start at s in response to all strategy choices of the other players. Formally Xn(s) 
equals inf~ s u p ~  ]r where the payoff function 12 n is defined by the game 

for which s is the initial state. The importance of the min-max value X n is that  

it represents the ability of the players to punish player n with pre-determined 

strategies (for example as part of an approximate equilibrium). Because the 

other players may be limited in their ability to coordinate their actions, this 

min-max value could be strictly greater than the max-min value when there are 

at least three players. (The max-min value for player n is the most that  player 

n can obtain when she must choose her strategy first and the other players 

respond to that  strategy choice with the goal of minimizing her payoff, obtained 

formally by switching the inf and the sup in the above formula.) Proofs that  

(two-person) zero-sum games have approximate equilibria demonstrate that  for 

these games evaluated at the initial state the max-min value equals the min-max 

value, thereafter called the value of the game. 

For every a n E A n and ~ E l-Ik#n Ak let (~, a n) be the corresponding member 

of As = l i k e n  Ask, with ~k the corresponding action of Player k for all k r n. For 

every player n E N and strategy tuple a, define the j u m p  function ,n. 3~" 7-/~ --* R 

by 
in(h):  max Exn( t )  E I I  ~k(h)(ak)p~a,a~)(t)' 

anEA~ tES fieI'Ik#n A~ k~N\{n} 

namely the maximal expected value of X n on the next stage following s. Extend 

this definition to .n. 3~" 7-/~ --~ R in the natural way. 

For any function f :  7-/~ ~ R,  state s E S, finite history h E 7-/s, action 

a n E A~ and strategy tuple a, define w~(h)(a n) to be the expected value of f 

on the next stage after h, conditioned on the use of a ~ by Player j and the use 
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of ak(h) by all the other players k r j .  This means that  

w~(h)(a~) = E E f(h,((t,a~),t) H k ^k a~ (h)(a )p(a,~)(t). 
tES &eI-Ikcn A~ kEN\{n} 

V ~ Define w~(h)(~t n) to be wa ~ (h)(an). 

Definition: A strategy tuple a of a stochastic game is e p e r f e c t  if for every 

player n C N there exists a function rn: 7-/~ ~ R and a subset B C_ ~ such 

that  the probability of reaching ~ \ B  with the strategies a does not exceed c 

and for all players n E N and all finite histories h C B, 

r~(h) >_ j~(h) - ~, 

Irn(h)-v~n(h)l  <_ e, and 

for all actions a n chosen with positive probability by a n at h 

( h ) ( a D  - r (h)l < 

Furthermore, the strategy tuple a is e v a l u e - p e r f e c t  if for every player n the 

function r ~ is dependent only on the state where the history terminates. A 

stochastic game is p e r f e c t  if there exists an c perfect strategy tuple for every 

positive e. A stochastic game is v a l u e - p e r f e c t  if there exists a e value-perfect 

strategy tuple for every positive e. 

THEOREM 1: A normal stochastic game with approximate equilibria is also 

perfect. A valued normal stochastic game is also value-perfect. 

Proof: For a fixed 0 < e < 1 let a be an e4/(40001NI4M 2) equilibrium, and 

if the game is valued let rn: S ~ R be the value functions and let A be a 

subset of finite histories such that  .4 is reached with a probability of no more 

than e4/(4OOOIN[4M 2) and such that  if h is in 7-/~\A terminating at s E S then 

Ivy (h ) - rn ( s ) [  <_ e4/(4OOO[NI4M 2) for all n C g .  Otherwise let .4 be the empty 

set. 

For any history h e ~ and player n let A~(h) be the set of actions a n E 

A~ chosen with positive probability according to cry(h) such that  wg(h)(a n) - 
v~(h) > e/10 and let A~_(h) be the set of actions a n E A~ chosen with positive 

probability according to ash(h) such that  w~(h)(a n) -v'~(h) < -e /10 .  Let 

An(h) be the union of A~_(h) with An(h). Whenever An(h) is not empty player 

n could alter her strategy in the following way. If a n is in A~_(h) then a n could 

be chosen with certainty (or any other action in this set). If a n is in A n (h) then 
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the probability given to a n could be given to any action ~n maximizing the value 

of wn(h)('). In either case we conclude that  player n can increase her expected 

payoff conditioned on reaching h by at least ean(h)(an)/lO (this much if a n is in 

A~(h) and by at least ~/10 if a n is in A~_(h)). Because a is an e4/(40001NI4M 2) 
equilibrium, the probability of any player n ever using an action in some An(h) 
according to the distribution #~ does not exceed e3/(400]NI3M2). 

Let 791 be the union of A with the histories h in 7-/~o, where for some player 

n C N an action in An(hi) is used at some history hi resulting from the ith 

stage truncation of h (where h E 7-/k and i <_ k). By the above we know that  the 

probability of reaching 791 according to #o does not exceed c3/(3501NI3M2). 

For any history h E 7-/~ and player n E N let Bn(h) be the set of actions a n C 

A n chosen with positive probability according to a n such that  the probability 

of entering 731 on any following stage is at least e/(IOINIM ) when a n is used 

against the distributions a~k(h) for k ~ n and otherwise at later stages all players 

behave according to a. An(h) is a subset of Bn(h) (since use of an action in 

An(h) causes entry into 731 with certainty). By the above the probability of any 

player n ever using an action in some Bn(h) according to #o does not exceed 

c2 / (35M[N[2). 

We define a new strategy tuple 5. If h C ~ and no member of Bn(h ~) 
appears in h for any truncation h ~ E 7-gk of h with k < i, then &n(h) is the 

distribution on A n where the actions in Bn(h) are given zero probability and 

the probabilities for the remaining actions are normalized (meaning that  the 

probability for an action a n qf Bn(h) is a~(h)(an)/~-]~nr if 

all actions are removed in this way, then define 5n(h) to be any distribution). 

Otherwise, if Bn(h) is empty or some member of Bn(h ~) was played in the past 

then ~n(h) = an(h). 

Let 792 be the subset of 7-/~ such that  h C :D2 if and only if there is some 

truncation hk of h and some player n with Iv~(hk) - v~(hk)l > e/5. From the 

unlikeliness of using an action in some Bn(h) we conclude that  the probability 

of reaching 792 according to #o does not exceed e/7. 

Let 793 be the subset of 7-/~o defined by h c 793 if and only if for some player 

n and some truncation hk E 7-/k of h the actions removed to make on(hk) from 

a n (hk) had a probability greater than ~/(51N]M). Also from the unlikeliness of 

using an action in some Bn(h) the probability of reaching 733 according to #~ 

does not exceed el7. 

Let 794 be the subset of ~ o  defined by h C D4 if and only if there is some 

player n and some truncation hk C "Ilk of h such that  vn(hk) < jn(hk) - e/10. 
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Whenever this inequality holds player n can obtain an expected payoff of at least 

vn(hk) + e/11, and therefore by the approximate equilibrium property of ~ the 

probability of reaching ~D4 according to p~ cannot not exceed e3/(3001N]3M). 
4 Define B to be 7-/~\([.Ji= 1 :Di). If the game is not valued let the function 

r~: H~ ~ R for player n be v~ and if the game is valued then let it be the 

value flmction, already labeled r n. Let (~ be the candidate strategy tuple for 

the e perfection property. We complete the proof with the more general v n, as 

the proof with the valued property is the same. 

Let h be any history in B terminating at some s C S, and let a n be an 

action chosen by player n with positive probability according to (~(h) .  Due 

to non-membership in 1)3, when player n uses any action a n not in B~(h) 

against the distributions ~k(h) for k ~ n the expected value of either X n or 

v~ on the next stage does not differ by more than e/5 from what it would 

be with the distributions a~(h). By non-membership in :D4 this is enough for 

v~(h) >_ i f (h)  - ~. Because a n is not in A~(h), the expected value of v n on 

the next stage resulting from using a n is within e/10 of vn(h), and due to non- 

membership in :D2 vn(h) does not differ from vn(h) by more than e/5. 

Left is to show that  the probability of leaving B according to #~ does not 

exceed e. Because the only difference between cr and ~ results from the use 

of actions in Bn(h) for some h C ~ and n C N and the probability of such 

an action ever being used according to #o does not exceed e2/(35MINI2), the 

conclusion follows from the unlikelihood according to #~ of leaving B. | 

QUESTION 1: Does there exist a normal stochastic game that is perfect but 
doesn't have approximate equilibria? 

There are two problems with the converse direction of Theorem 1. First, 

although the probability of leaving the set B of histories is very small if the 

players stick to the suggested strategies, a player could steer intentionally the 

play away from B with unknown consequences. Second, for an e equilibrium 

we would like to punish a player who obtains a cumulative advantage of more 

than e. For some fixed positive e how do we know that  there is a positive 5 so 

small that  if a player could obtain at most a payoff advantage of 5 on each stage 

of play then through honest selection of actions this could not accumulate to 

an advantage of more than e over time? Under what conditions the converse 

of Theorem 1 is possible is an interesting topic, partly because Vieille's proof 

(for two-person games) uses a special version of this converse direction. In this 

version, however, the relation between the e and ~ mentioned above is dependent 

on the number of different situations calling for different behavior. 
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Define an e perfect strategy tuple a to be e s e l f -pe r f ec t  if the function 

rn: 7-Lw ---+ R defining the perfection property is equal to v~. A stochastic game 

is s e l f -pe r f ec t  if there exists an e self-perfect strategy tuple for every positive 

QUESTION 2: Does there exist a normal stochastic game that is perfect but not 

self-perfect ? 

3 .  A n  e x a m p l e  

The following is an example of a recursive two-player normal stochastic game 

with limit average payoffs, three non-absorbing states and three actions for each 

player at each state, that  is not value-perfect, meaning also that  the game is 

not valued (by Theorem 1). 

Example 1: The three non-absorbing states are the set {s, t, u}. The game is 

symmetric with respect to the two players, Player One and Player Two. Like 

a tennis match, there is a state t that  means "advantage" to Player One and 

another state u that means "advantage" to Player Two. 

At the state s both players have three actions, a for "advance", w for "wait", 

and c for "check". For Player i = 1, 2 the actions a, w, and c will be called ai, 

wi, and ci. The transitions and payoffs are as follows. 

If Player One chooses al at state s and 

- if Player Two chooses a2, then the play returns to the state s, 

- if Player Two chooses w2, then the play advances to the state t, 

- if Player Two chooses c2, then the game ends with certainty with a payoff of 

10 to Player One and 14 to Player Two. 

If Player One chooses wl at state s and 

- if Player Two chooses a2, then the play advances to the state u, 

- if Player Two chooses w2, then the play returns to the state s, and 

- if Player Two chooses c2, then the game ends with a payoff of 25 to Player 

One and 10 -3 = 1/1000 to Player Two. 

If Player One chooses cl at state s and 

- if Player Two chooses a2, then the game ends with a payoff of 14 to Player 

One and 10 to Player Two, 

- if Player Two chooses w2, then the game ends with a payoff of 10 -3 to Player 

One and a payoff of 25 to Player Two, and 
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- if Player Two chooses c2, then the game ends with a payoff of 10 -3 to both 

players. 

At the state t Player One has three actions, el for "end", r l  for "retreat", 

and f l  for "flip". Player Two also has three actions, n2 for "normal", b2 for 

"first bluff" and 12 for "second bluff". 

If Player One chooses el at the state t, then no matter what Player Two does 

the game ends and Player One receives a payoff of 20, and 

- if Player Two chooses n2 or 12, then Player Two receives a payoff of 21 and 

- if Player Two chooses b2, then Player Two receives a payoff of 21 + 10 -3. 

If Player One chooses rl at the state t and 

- if Player Two chooses n2, then with 1/2 probability the game ends with a 

payoff of 25 to Player One and 1 to Player Two and with 1/2 probability the 

play returns to state s, 

- if Player Two chooses b2, then the game ends with a payoff of 20 § 10 -3 to 

Player One and 10 -3 to Player Two, and 

- if Player Two chooses 12, then the game ends with a payoff of 20 to Player 

One and 7.5 + 10 -3 to Player Two. 

If Player One chooses f l  at the state t and 

- if Player Two chooses n2, then with 2/7 probability the play moves to the 

state u and with 5/7 probability the game ends with a payoff of 19.61 for Player 

One and 10 -3 for Player Two, 

- if Player Two chooses b2, then the game ends with a payoff of 20 for Player 
One and ~ + 10 -3 for Player Two, and 

- if Player Two chooses 12, then the game ends with a payoff of 20 + 10 -3 for 

Player One and 10 -3 for Player Two. 

At state u the situation is symmetric to that  of state t, but with the roles 

of the players switched. Player Two has the actions e2, r2 and f2 and Player 

One the actions nl ,  bl and 11. For example, if nl  and f2 are chosen then there 

is a 2/7 probability of moving to the state t and a 5/7 probability of the game 

ending with a payoff of 1/1000 for Player One and 19.61 for Player Two. 

The game starts at the state s. One should interpret the "end" of the game 

with corresponding payoffs to be a transition to an absorbing state. (Strictly 

speaking, our example has 23 absorbing states, 9 following directly after either 

t or u, and 5 following after s. By choosing vectors in R 2 that  contain all the 

payoffs in their convex hull we could reduce the number of absorbing states to 
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three.) If the game never reaches an absorbing state then both players receive 

a payoff of 0. 

Most critical to this example is the approximate value of 15 for a player at 

the state s. If Player One has an expected a payoff of 15 at s, then at the state 

t if Player Two chooses the action n2 Player One will be indifferent between 

ending the game immediately with the action el or moving back to s with 1/2 

probability with the action r l .  

When analyzing this game the term f r e q u e n c y  refers to the probability that  

an action is chosen. This is done to avoid confusion with other expressions of 

probability. 

LEMMA 1: From a start at state s each player can guarantee 10.4, meaning that 

)~1(8) and X2(S) are at least 10.4. 

Proof." By symmetry, it suffices to show that  Player One can guarantee 10.4. 

Let Player One choose the action el at state t and the action nl at state u. At 

state s let Player One choose the actions al,  wl, and cl with the frequencies 

.39, .26, and .35, respectively. We need to check that  with the choice of any 

actions for Player Two that  Player One receives at least 10.4 conditioned on not 

returning to the state s. If Player Two chooses the action c2 then the payoff for 

Player One would be at least .39 �9 10 + .26 �9 25 = 10.4. If Player Two chooses 

the action w2 then the payoff for Player One would be at least .39.20 which is C-OK-, 
more than 10.4. If Player Two chooses the actions a2 and r2 then Player One 

would get at least .13-]-.35,14 which is more than 10.4. If Player Two chooses the .48 ' 
actions a2 and f2 then Player One would get at least (2/7)..26.20+.35.14 which is 

.61 

more than 10.4. If Player Two chooses the actions a2 and e2 then Player One 

would get more than 16. | 

It is now easy to confirm that  x l ( t )  >_ 20 and X2(u) _> 20 and that  x l (u)  _> 5.7 

and x2(t) > 5.7. 

THEOREM 2: There is no 10 -19 value-perfect strategy pair for the game of 

Example 1 (implying by Theorem 1 that the game is not valued). 

Before proving Theorem 2 we need some more lemmatta, based on the as- 

sumption that  there exists a 10 -19 value-perfect strategy pair a, with /3 the 

corresponding subsets of histories and vi: {s, t, u} --* R the value functions for 

the players i = 1, 2. (For the absorbing states the value functions are already 

determined.) If a player i prefers some action over another or can obtain some 

quantity with an action, we are referring either to the expected value of v i on 
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the next stage if the preferred action was given a positive frequency by the 

strategies or otherwise the expected value of X i on the next stage. 

LEMMA 2: The probability of never reaching an absorbing state from the start 
of the game cannot exceed 10 -17 . 

Proof: If this probability did exceed 10 -17, then there must be a history h in 

B such that  the probability of not reaching an absorbing state in the future is 

at least .9. Because both players can obtain a payoff of at least 5.7 from any 

history terminating at a non-absorbing state, the "jump" functions j~ are at 

least 5 . 7 -  10 -18 for all histories terminating at non-absorbing states, meaning 

also that  v i is at least 5 .7 -  2.10 -18 for all of these states and i = 1, 2. Since the 

functions v i represent approximately what the players receive in the future from 

histories in B, a member of B with such a low probability of future absorption 

would not be possible. 

LEMMA 3: From the start  of the game the subset {t, u} of states is reached with 
a probability of more than 2 �9 10 -3. 

Proof: 

CASE 1; vi(s) > 12.6 FOR BOTH PLAYERS: It follows directly from the fact 

that  the sums over the two players from all absorbing payoffs following directly 

after the state s {without first reaching either t or u) never exceed 25.001 and 

this sum for all absorbing payoffs of the game never exceeds 41 + 10 -3. 

CASE 2; vi(s) < 12.6 FOR SOME PLAYER i: By symmetry we assume that  

v 1 (s) < 12.6. The frequency given to a2 at any history in/~ terminating at s 

does not exceed 11/12, otherwise Player One could receive at least 12.66 on this 

stage by playing Cl. 

Let ho be the initial history at the first stage of play at the state s, which 
necessarily belongs to B. 

CASE 2a; PLAYER ONE CHOOSES a l  WITH POSITIVE FREQUENCY AT h0: F rom 

above we know that  a2(ho)(C2) + a~(ho)(W2) > 1/12. If a2(ho)(c2) were not 
v 1 at least twice that  of a~(ho)(w2) then wz (ho)(al) would be at least 10 -18 

more than vl(s) < 12.6, a contradiction. Likewise 25a2(ho)(w2) > a2(ho)(c2), 
v 1 

since otherwise wo (ho)(al) >_ V 1 ( S )  - -  10 -18 would imply  that V 1 (8) is less t h a n  

10 + 10 -15, a contradiction to Lemma 1. With Player Two choosing the action 

c2 with positive frequency it is necessary that  asl(h0)(al) _> 7/10. But we have 

shown above that  a~(ho)(w2) >_ 1/312. This implies that  t is reached on the 

second stage with a probability of at least 5i-2i-6>1 7 1/500. 
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CASE 2b; PLAYER ONE DOES NOT CHOOSE a l  WITH POSITIVE FREQUENCY 

AT h0: Clearly Player One chooses Wl with positive frequency at h0, since 

otherwise Player One would choose Cl with certainty and Player Two would 

choose w2 with certainty. We know from Lemma 1 that  c2 is not chosen with 

positive frequency. With a payoff of at least 10.4 - 10 -18 for Player One from 

the combination of al with a2 (a return to state s), to prevent Player One from 

getting at least 12.6 + 10 -3 we must assume that  Player Two chooses the action 

a2 with a frequency of at least .6 at the history h0. If we assume that  Player 

One chooses the action Cl with a frequency of at least .98 at the history h0, 

then Player Two would have chosen the action w2 with certainty. Therefore we 

must assume that  the probability of reaching u on the second stage must be at 

least .6/50 = .012. | 

LEMMA 4: I f  there are members o r b  terminating at both t and u then at any 

such histories the corresponding action ri is chosen with positive frequency. 

Proof." For the sake of contradiction we assume that  the action rl  is not chosen 

with positive frequency at some history h in B terminating at t. By comparing 

the actions 12 and b2 we can assume also that  12 is also not chosen with positive 

frequency at h. If Player Two preferred the action b2 by more than 10 -18 over 

the action n2, then only b2 would have been chosen and then indeed Player One 

would prefer the action rl  over the others by more than 10 -18. Fhrthermore, 

if Player Two placed all but 10 -16 frequency on the action b2 then the same 

would hold. To prevent such a preference for the action b2 over the action n2 

it would be necessary for v2(u) to be at least 20 + 10 -4 and that  Player One 

chooses the action f l  with positive frequency. 

CASE 1; v l (u )  < 20.9: To prevent Player One preferring the action el over 

the action f l  by more than 10 -18 at the history h, it would be necessary that  

Player Two chooses the action/2 with positive frequency at h. But as argued 

above, without a positive frequency for the action rl this is not possible. 

CASE 2; v l (u )  :> 20.9: It would be necessary that  Player Two chooses the 

action e2 with positive frequency for all histories in B terminating at u. But 

this implies that  v2(u) is no more than 20 + 10 -18, a contradiction to the above 

assumption. II 

LEMMA 5: I f  Player Two chooses b2 with positive frequency at a history in B 

terminating at t it is necessary that Player One also chooses rl at this same 
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history with a frequency less than 1/5000. K additionally Player Two chooses 

both b2 and 12 with positive frequency then at this same history Player One 

chooses the action f l  with a frequency less than 1/10000. The corresponding 

symmetric statement from switching the players and the states holds. 

Proof: From only the actions el and f l  the advantage for Player Two by 

choosing b2 over the action n2 does not exceed 1/1000. Since Player Two gets 

at least 5.7 from the combination of rl with n2, if Player One chose rl  with a 

probability of at least 1/5000, Player Two would prefer by more than 10 -18 the 

action n2 over the action b2. Additionally, if Player One chose the action f l  with 

a frequency exceeding 1/10000, Player Two would prefer by more than 10 -18 

the action b2 over the action 12. (Player Two would loose no more than 15 10000 

from the combination of b2 with rl ,  but then would gain at least 7~00 + .99971000 

from the combinations of b2 with el and ]'1.) | 

LEMMA 6: f f  vl(8) _~ 14.9, vl(u) <_ 20.9 and there is some history in B 

terminating at t then v2(t) is at least 20.995. The corresponding symmetric 

statement from switching the players and the states holds. 

Proof: For every history in B terminating at t the above assumptions imply 

that  the combination of rl with n2 gives no more than 19.95 to Player One and 

the combination of f l  with n2 gives no more than 19.98 to Player One (with 

respect to the expected value of v I on the next stage). 

First, at such a history one can assume that  b2 was chosen with positive 

frequency. Assume the contrary. If Player Two chose n2 with a frequency of 

at least 10 -16 then Player One would prefer el over rl by more than 10 -18. 

Without Player One choosing rl  with positive frequency and without Player 

Two choosing b2 with positive frequency, the only way to prevent Player Two 

from only choosing the action n2 (which would lead quickly to a contradiction) 

would be that  Player One chooses el with a frequency of at least 1 - 10 - ls .  

But this would imply the conclusion of the lemma, and therefore we can assume 

that  the frequency for 12 was at least 1 - 10 -16. But this leads directly to a 

contradiction (as Player One would respond by choosing only f l ) .  Therefore we 

can assume that  b2 was chosen indeed with positive frequency. 

Second, at such a history one can assume that  Player Two chose 12 with 

positive frequency. Suppose the contrary. We can assume that  Player One 

didn't  choose f l  with positive frequency, since the only way to prevent a 10 -18 

preference for el over f l  would be if all but 10 -14 frequency went to the action 



302 R.S. SIMON Isr. J. Math. 

b2 (also leading to a contradiction). But with no weight given to the action f l  

the only way to prevent Player Two from choosing only the action n2 (which 

would lead to a contradiction) would be for Player One to choose el with a 

frequency of at least 1 - 1/5600. The result of such a behavior would also imply 

the conclusion of the lemma. 

With both b2 and 12 chosen with positive frequency, Lemma 5 completes the 

proof (for example by looking at Player Two's option to choose b2). | 

LEMMA 7: From any member orb  terminating at t the action n2 is chosen with 

a frequency of at least 5.10 -5. If  additionally v2(s) <_ 14+ 10 -5 then the action 

f l  is chosen with a frequency of at/east 4.10 -9. If  Player One does not choose 

rl with positive frequency at a member of /~ terminating at t then the action f l  

is chosen at this history with a frequency of at least 5.10 -5. The corresponding 

symmetric statement from switching the players and the states holds. 

Proof: First we show that  Player Two chooses the action n2 with a frequency 

of at least 5 �9 10 -5. Suppose the contrary. The first consequence is that  Player 

One does not choose el with positive frequency, since either the action rl  or the 

action f l  would be preferable by a quantity of at least 10 -4. Player Two must 

give positive frequency to both b2 and 12, in the first case to prevent Player One 

from choosing only the action f l  and in the second case to prevent Player One 

from choosing only the action rl  (as both would result in a contradiction). But 

then by Lemma 5 Player One must choose el with positive frequency (which 

would be a contradiction). 

A frequency for el above 1 - 4 �9 10 -5 would imply that Player Two chooses 

only b2, which would lead to a contradiction, so the frequencies for rl  and f l  

add up to at least 4 �9 10 -5. Given v2(s) <_ 14 + 10 -5, Player Two prefers the 

combination of I2 with rl  by at least 8-10 -4 over the combination of n2 with rl .  

To get Player Two to choose n2 with positive probability (which must hold by 

the above) it would be necessary for Player One to choose f l  with a frequency 

of at least 4 .10  -9 . 

Lastly, if Player One did not choose rl with positive frequency then one must 

conclude that  Player Two did not choose 12 with positive frequency (since b2 

would be a much preferable action). Since Player Two can get no more than 

51/7 from the combination of n2 and f l ,  it is necessary that  Player One chooses 

f l  with a frequency of at least 5 �9 10 -4 to prevent Player Two from preferring 

b2 over n2 by more than 10 -18. | 
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Proof of Theorem 2: We separate the proof into three cases, determined by 

the use of the actions c~. 

CASE I; NEITHER PLAYER i CHOOSES THE ACTION Ci AT ANY HISTORY IN /3 

TERMINATING AT s: 

CASE IA; FOR ONLY ONE OF THE STATES t OR U IS THERE A HISTORY IN /3 

TERMINATING AT THIS STATE: 

By symmet ry  we can assume tha t  s tate t is reached directly from s (by a 

combination of the actions al  with w2) with a probabili ty of at least 1 - 10 -17 

and that  v l(s) _> 20 - 10 -15. Due to Lemma 7 (implying minimal frequencies 

for the choices of f l  and n2 at the state t) and the assumption on not reaching 

u with histories in/3,  we can assume tha t  the probabili ty of reaching a history 

terminating at t where Player One does not choose r l  with positive probabili ty 

does not exceed 10 -s .  At any history in /3  terminating at t where Player One 

chooses the action r l  with positive frequency, the combination of r l  with n2 

gives at least 22 for Player One and due to Lemma 7 (implying a minimal 

frequency for n~) the action r l  dominates the action el by more than  10 - i s .  

With Player One not choosing el with positive frequency at such a history, no 

mat te r  what Player Two does, we must assume that  v2(s) is no more than  8, a 

contradiction to Lemma 1. 

CASE [B; THERE ARE HISTORIES IN /3 TERMINATING AT BOTH t AND U: By 

symmetry  we can assume that  t is reached directly from s (by a combination of 

al and w2) with a probabili ty of at least .499. 

CASE IBi; vl(s) >_ 15.1: According to Lemma 4 we know that  Player One 

chooses r l  with positive frequency at any history in /3 terminating at t. By 

Lemma 7 (implying a minimal frequency for n2) and by comparing the action 

r l  with el, we can conclude that  Player One is not choosing el with positive 

frequency at such a history, and therefore the payoff for Player Two conditioned 

on reaching t and not returning to s cannot exceed 7.6. 

Now we consider any history in/3 terminating at s such tha t  both  91 and w2 

are chosen with positive frequency. Since Player One does not choose the action 

Cl with positive frequency nor el at any history in B terminating at t, if Player 

One chooses 91 with a frequency of at least 3 .10  -19 then by v2(t) < v2(s) - 1.2 

(from Lemma 1 and the conclusion of the last paragraph) Player Two would not 

choose the action w2 with positive frequency. So with Player One choosing al 

with a frequency of no more than 3 �9 10 -19, Player Two can receive a payoff of 

at least 20 - 3 �9 10 - i s  by choosing the action 92 instead, and therefore v2(s) _> 
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20 - 3 �9 10 -18. Since t is reached with a probability of at least .499 and Player 

One does not choose either el or cl with positive probabili ty (at any histories 

in B), the amount  Player Two gets from the state s, namely v2(s), could not be 

more than 19, a contradiction. 

CASE IBii; vl(s) <_ 15.1: Since Player One receives at least 20 - 10 - i s  from 

the state t and this s tate is reached from s with a probability of at least .499, 

vl(u) can be no more than 10.25, at least .15 smaller than  the guaranteed 

payoff for Player One at the state s. Furthermore, there must be a history in 

B terminating at s where Player One chooses Wl with positive frequency, since 

otherwise vl(t) >_ 20 - 10 - i s  would make vl(s)  < 15.1 impossible. Whenever 

Player One chooses Wl with positive frequency at a history in B terminating at 

s, it would be necessary that  Player Two chooses w2 with a frequency of at least 

1 - 10 -17 (since otherwise by vl(u)  < 10.25 the choice of Wl would result in an 

expected payoff for Player One less than  vl(u) - 10-1s). But then Player One 

could choose al for a guaranteed payoff of at least 20 - 10 -15, a contradiction 

to the assumption vl(s) < 15.1. 

CASE II; PLAYER i CHOOSES THE ACTION c i AT SOME HISTORY IN ~ TERMI- 

NATING AT 8, BUT PLAYER j # i DOES NOT CHOOSE THE ACTION Cj AT ANY 

HISTORY IN ~ TERMINATING AT 8: By symmetry,  we assume tha t  it is Player 

One who chooses the action Cl. Since Player One can get no more than  14 with 

the action Cl, we have that  v l (s)  < 14+  10 - i s .  This implies for every history h 

in B terminating at s that  the frequency for a2 must be at least 3/5, otherwise 

Player One would prefer to choose the action al ,  even when punished in the 

event tha t  Player Two had chosen a2 at the same time. Likewise, the frequency 

for a2 must be at least 10.399 > .74 whenever Player One is choosing Cl with 

positive frequency. 

Next we know that  there is some history in B terminating at t. To contradict 

this claim it would be necessary by Lemma 3 that  the state u is reached with a 
1 probabili ty of at least V6i" But  then Lemma 7 (its symmetric  s tatement)  would 

imply that  t is reached from u with a probabili ty of at least 2 �9 10 -13, implying 

that  indeed t is reached with a probabili ty of at least 10 -17. 

CASE I IA;  THERE IS NO HISTORY IN ~ TERMINATING AT u OR THERE IS NO 

HISTORY IN • TERMINATING AT 8 WHERE PLAYER ONE CHOOSES Wl WITH 

POSITIVE FREQUENCY: Assume first tha t  there is no history in B terminating 

at u. Because Player Two chooses a2 with a frequency of at least 3/5, there 

must be a subset B' of B such tha t  B \B '  is reached with a probabili ty not 
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exceeding 10 -9 and in every history in B I Player One does not choose wl with 

a frequency exceeding 10 -9. If, however, Player One does not choose wl with 

positive frequency at any history in/3, proceed with the assumption that/3~ is 

equal to/3.  

Consider any history h in/3~ where Player One chooses Cl with positive fre- 

quency and Player Two chooses w2 with positive frequency. Because Player 

One chooses Wl with at most a frequency of 10 -9 and v2(s) _> 10.4, it follows 

that  Player One is choosing al with a frequency of at least 1 - 2 �9 10 -s  (since 

otherwise Player Two would loose too much from the action a2 and choose 

only the action w2, implying of course that  Player One could not have opted 

for the action Ca). As Player One receives at least V1(8) -[- 5o'2(h)(w2) from 

the action al (as vl(t) >_ 20 - 10-18), the frequency a2~(h)(w2) given to w2 

by Player Two at h cannot exceed 10 -19. Since this is true for all h in /3~ 

where Cl and w2 are chosen, as a consequence the combination of Cl with 

w2 plays no significant role in the expected payoffs of the game and the two- 

dimensional vector (vl(s), v2(s)) is within a Euclidean distance of 10 -5 from 

the convex combination of (14, 10) and (vi(t),v2(t)). But this is not possible, 

since vl( t)  _> 2 0 -  10 - i s  and vl(s)  _< 14+  10 - i s ,  which would imply that  v2(s) 

is less than 10.1, a contradiction to Lemma 1. 

CASE IIB; THERE IS SOME HISTORY IN /3 TERMINATING AT U AND THERE 

IS SOME HISTORY IN /3 WHERE PLAYER ONE CHOOSES Wl WITH POSITIVE 

FREQUENCY: Since Player Two chooses the action a2 with a frequency of at 

least 3/5 at any history in/3 terminating at s, we must assume that  when Player 

One does choose wl with positive frequency at some history in/3 terminating at 

s the quantities v 1 (u) and v 1 (s) must be within 10 -~s of each other, implying 

that  vl(u) _< 14 + 10 -17. By Lemma 6 we have v2(t) _> 20.995. By Lemma 

7 at all histories in B terminating at u, Player Two chooses f2 with a positive 
4 2.20.995 = 20 + 16-6 there would frequency of at least 4 .10  -9. With 5.19.61 + 

be an advantage of at least 2 .10  -11 to Player Two by playing f2 instead of e2, 

and therefore e2 is never chosen at any history in B terminating at u, implying 

that  vl(u) <_ 7.9. But by the above this implies that  vl(s) is also below 8, a 

contradiction to Lemma 1. 

CASE III; FOR BOTH i ---- 1,2 PLAYER i CHOOSES THE ACTION c i AT SOME 

HISTORY IN /3 TERMINATING AT 8: It is necessary that  v~(s) <_ 14 + 10 - i s  for 

both i = 1, 2, since otherwise neither cl nor c2 would have been used. Lemmatta  

3 and 7 imply that  there are histories in B terminating at t and at u. Also from 

v~(s) <_ 14 + 10 - i s  for both i = 1,2 we conclude that  both vl(t) and v2(u) do 
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not exceed 20.1. 

Furthermore, Player One must choose al with a frequency of at least 1/50 at 

any history in B terminating at s, and the same must hold for Player Two and 

a2. On the one hand, if Player One chose Cl with a frequency of at least .28 

and also al with less than 1/50 then Player Two could get at least 14.1 from 

responding with the action w2 (even if he is punished for choosing this action). 

On the other hand, if Player One chose Wl with a frequency of at least .7 then 

Player Two could get at least 14.1 by choosing the action a2. 

Also by Lemma 3 there is some history h in B terminating at s where the 

combination wi and ak are played, with i r k. Without loss of generality we 

can assume that  the actions al and w2 were played together at some history h 

in B terminating at s. 

CASE IIIA; THE ACTION Wl WAS NOT CHOSEN WITH POSITIVE PROBABILITY 

AT THE HISTORY h: With a frequency of at least 1/50 given to al ,  if v2(t) 

were at least 14+ 10 -16 then wV2(h)(w2) would be at least 1 4 + 2 . 1 0  - i s ,  which 

would contradict the main assumptions of Case III. From Lemma 6 we must 

conclude that  vl(u) is at least 20.995. Therefore from Lemma 7 (establishing 

minimal frequencies for the actions n2 and f l )  Player One chooses the action 

f l  with positive frequency and prefers it over the action el by more than 10 - i s  

at any history in B terminating at t, implying that  v2(t) < v2(s) - 1. Due to 

the minimal frequency of 1/50 given to al and Player Two's positive frequency 

for w2, we must presume at the history h that  Player One also chose Cl with 

a frequency of at least 1/1000 (as otherwise the choice of w2 would result in 

a payoff of no more than v2(s) - 1/200). Since Player One is not choosing Wl 

with positive frequency at the history h, Player Two could not have chosen the 
v 2 action a2 at h with positive frequency, as then w~ (h)(a2) < 10 _ + l 090v (s) < 

v2(s) - 10 -4 (from v2(s) > 10.4 - 10-1s). But this contradicts our argument 

that  Player One does choose Cl with positive frequency at the history h. 

CASE I I IB;  THE ACTION Wl WAS CHOSEN WITH POSITIVE PROBABILITY AT THE 

HISTORY h: Since both al and a2 were chosen with a frequency of at least 1/50, 

we must assume that  vl(u) and v2(t) are both no more than 14 + 10 -16 (since 

otherwise the actions al and as would not have been chosen, in preference for 

Wl and w2). On the other hand, by Lemma 6 we must assume that  both vZ(u) 

and v2(t) are at least 20.995, a contradiction. | 

We know of at least two e equilibrium strategies to this game. 

For the first approximate equilibrium, at all visits to s let the players alternate 

between playing al with w2 and playing a2 with Wl. When at the state t 
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let Player Two choose only the action n2 and let Player One choose el with 

a frequency of 9/21 and rl with a frequency of 12/21. Let the players act 

symmetrically at the state u. The future expected payoffs for their visits to the 

state s will alternate between (15, 20) and (20, 15), which will imply that Player 

One will be indifferent between her two actions at the state t and the same holds 

for Player Two at the state u. It is easy to check that neither player has any 

motivation to deviate. 

The second equilibrium corresponds to the Vieille proof, and it is not so easy 

to find. Almost all of the time both players perform together the actions al and 

a2 at the state s. At the state t, Player Two will choose n2 with certainty and 

Player One will choose the actions rl and el with frequencies 7/13 and 6/13, 

respectively. At the state u, Player One will choose the action nl with certainty 

and Player Two will choose the actions r2 and e2 with frequencies 6/13 and 

7/13, respectively. Every time the play is at the state s the players count the 

number of times the play has been consecutively in s. Let N be any natural 

number greater than 100/e. If it is the Nth consecutive visit to s or something 

less, then Player Two plays a2 with certainty. In those initial N stages Player 

One chooses at each stage the action wl with a positive frequency p which 

satisfies (1 - p)N : 5/6 (and otherwise al is chosen). If the players reach the 

N § 1st consecutive visit to s, then Player One will play al with certainty and 

Player Two will choose w2 with the frequency of a very small quantity 8 (for 

example 8 < e/40 suffices) and e2 also with the same frequency of 8. They 

continue in this way until either w2 or c2 is chosen. One can calculate that the 

expected payoffs for both players at a first visit to s will be 15. Player One 

gets always an expected payoff of 15 at states s and u, and Player Two receives 

an expected payoff of 14 from the combination of w2 and al. The expected 

payoff for Player Two at the state s varies within each extended visit to that 

state, starting at 15 and falling to 14 if Player One fails to choose Wl. With 

8 sufficiently small, Player One cannot gain more than e by choosing wl when 

Player Two is choosing w2 or c2 with the very small frequency 8. 

4. Conclusion: Countably many states 

The discovery of the above example originated from our curiosity concerning the 

existence of approximate equilibria for two-player normal stochastic games with 

countably many states. Our pessimism concerning the existence of approximate 

equilibria for these games has its origin in the complexity of the e equilibrium 

strategies of Vieille's proof. If a game has finitely many states and there is some 
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strategy pair such that  the expected number of visits to any non-absorbing state 

is finite, then almost surely an absorbing state will be reached (something that  

may not be true if there are infinitely many non-absorbing states). This was 

used critically in Vieille's proof to show that  payoffs (averaged over the stages) 

were converging almost surely. If there is a proof of the existence of approximate 

equilibria for two-person games with countably many states, one could expect 

that  its application to games with finitely many states would deliver e equilibria 

with much faster rates of payoff convergence than that  obtained from the Vieille 

proof. 

There is an additional equilibrium concept more problematic when there are 

infinitely many states, that  of uniformity. An e equilibrium for a limit average 

stochastic game is u n i f o r m  if for some sufficiently large N for all n _> N it 

defines e equilibria for the truncated games that  end at the n th  stage (and where 

the payoffs are determined by the averages over the n stages). Vieille's proof 

is that  of the existence of uniform e equilibria for every positive e. We choose 

to consider a class of games for which the existence of approximate equilibria 

implies that  there are uniform e equilibria for every e > 0. Assume a normal 

stochastic game is recursive with fixed payoffs for all players at all absorbing 

states and assume that  some player can obtain a positive w > 0 from a start  

at any non-absorbing state. With any e equilibrium the probability that  an 

absorbing state is not reached from the start of the game cannot exceed e/w, 
and therefore there must be a stage K such that  the probability of absorption 

before reaching the stage K is greater than 1 - 2e/w. Assuming that positive 

e is less than 1 and letting N be greater than K/e, the original e equilibrium 

defines eM + 2eM/w equilibria for all games of n stages with n > N (where M 

was the bound on the maximal difference between any two payoffs). 

A strategy for finding a counter-example for countably many states using the 

above class of recursive games could be the following. Construct an infinite 

sequence of recursive games F0, F1 , . . .  with increasing finite sets So c_ $1 C_ . . .  

of non-absorbing states such that  for every i > 0 and j _> i the actions in Si are 

the same for all games F j, all payoffs for both players from absorbing states are 

greater than one, and if a is an action tuple at s �9 Si then p(i)Sa(t) = p(j)~(t) 
for all j > i and t �9 Si, (with p(k) the transition laws for the game Fk). 

Construct a game played on a countable state space (U~0  Si unioned with the 

absorbing states from all the games F~) by having the game start at ~ c So, 

define the non-absorbing states on the i th stage to be the set S~, and declare 

that  absorption occurs if an absorbing state of the game F~ has been reached 
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on stage i. Furthermore, give both players the ability to force the game to the 

set of absorbing states with certainty from any start  at a non-absorbing state 

of the new countable state space. Desirable may be games Fi such that  with 

large i the approximate equilibrium behavior of Fi keeps the non-absorbing play 

most of the time close to the set So and the minimal number of stages necessary 

to reach an absorbing state in the game Fi starting from any so E So goes to 

infinity as i goes to infinity. 
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